Python入门篇.第91天—Python matplotlib introduction

发布于 2023-12-30 | 作者: 纯洁的微笑 | 来源: 博客园 | 转载于: 博客园

今天我们一起来探究 Python 中一个很有趣的模块--Matplotlib,Matplotlib 是一个非常优秀的 Python 2D 绘图库,只要给出符合格式的数据,通过 Matplotlib 就可以方便地制作数据图。

一、初识 Matplotlib

1、IPython

IPython 是 Python 的一个增强版本。它在下列方面有所增强:命名输入输出、使用系统命令(shell commands)、排错(debug)能力。我们在命令行终端给 IPython 加上参数 -pylab (0.12 以后的版本是 --pylab)之后,就可以像 Matlab 或者 Mathematica 那样以交互的方式绘图。

2、pylab

pylab 是 matplotlib 面向对象绘图库的一个接口。它的语法和 Matlab 十分相近。也就是说,它主要的绘图命令和 Matlab 对应的命令有相似的参数。

二、 安装

1、在线安装

安装 Matplotlib 包与安装其他 Python 包一样,都可以使用 pip 来安装。
启动命令行窗口,在命令行窗口中输入如下命令:

pip3 install matplotlib

输入上面的命令后会自动下载安装 Matplotlib 包的最新版本。下载完成后会安装,最后提示 Matplotlib 包安装成功:

Installing collected packages: matplotlib
Successfully installed matplotlib-3.1.1

2、离线安装

在有网络限制条件下我们需要下载离线包来安装,python matplotlib 离线安装需要提前下载好与 python 版本对应的 wheel 安装包,下载地址

在上图中选择相应的安装包下载即可,cp36 表示 python 是 3.6 版本,同样的 cp37 表示 python 是3.7 版本,同样可以在 python 命令行下使用一下命令查看支持的版本属性:

>>>python
>>> import pip._internal
>>> print(pip._internal.pep425tags.get_supported())

以上结果可以显示出相应的版本支持,下载好后 使用 pip命令安装即可成功:

pip install matplotlib-3.1.1-cp36-cp36m-manylinux1_x86_64.whl

三、matplotlib 架构

1、matplotlib 架构图

matplotlib 框架分为三层,这三层构成了一个栈,上层可以调用下层,三层框架描述如下:

这三层属于matplotlib程序包的范畴,脚本层(pytplot模块)可以提供给我们一个与matplotlib打交道的接口,我们可以只通过调用pyplot模块的函数从而操作整个程序包,来绘制图形。

2、matplotlib 编程接口

matplotlib 编程接口由 3 层组成,组成描述如下:

编程接口图:

四、matplotlib 绘图概念

1、绘图方式

在matplotlib库里,总分成两种绘图方式

绘图方法通过调用一系列函数传入数据绘制出相应的图,
在 matplotlib.pyplot 里是封装好的函数,用户可以直接调用函数进行绘图。
一般的,我们约定 matplotlib.pyplot 取别名为 plt

其模块下主要定义如下两方面的函数:

操作类的函数:对于画布,图,子图,坐标轴,图例,背景,网格等的操作。
如:
plt.ylabel(), plt.xlabel(), plot.yscale(), plt.legend(), plt.title(), plt.text()等

绘图类的函数:画折线图,散点图,条形图,直方图,饼状图等特点图的绘制函数。
如:
plt.scatter, plt.plot(), plt.bar, plot.pie(), plt.hise()……

绘图部分函数如下:

序号 绘图函数(plt.xxx) 说明
1 acorr() 绘制x的自相关图
2 angle_spectrum()
3 bar() 制作条形图
4 barbs() 绘制倒钩的二维场图
5 barh() 制作水平条形图
6 boxplot() 制作一个盒子和胡须图
7 broken_barh() 绘制一个水平的矩形序列图
8 clabel() 绘制等高线图
9 cohere() 绘制x和y之间的一致性图
10 csd() 绘制交叉谱密度图
11 eventplot() 绘制相同的平行线
12 fill() 绘制填充多边形图
13 hexbin() 制作六边形分箱图
14 hist() 绘制直方图
15 hist2d() 制作2D直方图
16 magnitude_spectrum() 绘制幅度谱图
17 phase_spectrum() 绘制相位谱图
18 pie() 绘制饼图
19 plot() 绘制折线图
20 plot_date() 绘制包含日期的数据图
21 quiver() 绘制一个二维箭头场图
22 scatter() 绘制散点图
23 specgram() 绘制频谱图
24 stackplot() 绘制堆积区域图
25 streamplot() 绘制矢量流的流线型图
26 triplot() 绘制非结构化三角形网格作为线条图

面向对象式的绘图,才是matplotlib绘图最自然的方式

下图是 matplotlib 基本的组成部分

元素描述:

元素 描述
figure 图形
axes 子图形
title 标题
legend 图例
Major tick( 大标尺刻度
Minor tick 小标尺刻度
Major tick label( 大标尺刻度数值
Minor tick label 小标尺刻度数值
Y axis label y轴指标说明
X axis label x轴指标说明
Line 线型图)
Markers 数据标注点
Grid 格子

基本对象描述如下:

  1. Figure(图)

指整个图形(包括所有的元素,比如标题、线等)。 管理着所有的坐标系,还有一些特殊的艺术家和canvas(画布)。

  1. Axes(坐标系)

数据的绘图区域

  1. Axis(坐标轴)

坐标系中的一条轴,包含大小限制、刻度和刻度标签。

  1. artist(艺术家)

图中所有的对象都是artis,当图形显示时,所有的艺术家都会被绘制到画布上。

值得注意的是:

绘图之间的层级结构如下:

3、绘图步骤

在现实生活中,如果我们要画一幅画,首先需要什么工具呢?

  1. 首先咱们需要一个画板
  2. 其次还需要一张画布
  3. 指定大致轮廓(轴),轴是绘画的基准
  4. 最后是画画工具(画笔…)

而使用 Matplotlib 画图同样如此,首先需要指定一个画板,再指定一张画布,然后再指定元素开始作画。

例如:

import matplotlib.pyplot as plt
# 指定一个画板
fig = plt.figure()
# 指定画板后指定轴
# ax = fig.add_subplot(111)
ax1 = fig.add_subplot(221)
ax2 = fig.add_subplot(222)
ax3 = fig.add_subplot(224)
ax4 = fig.add_subplot(223)
# 设置轴的位置
# ax.set(xlim=[0.5, 4.5], ylim=[-2, 8], title='An Example Axes',
#        ylabel='Y-Axis', xlabel='X-Axis')
plt.show()

运行结果如下:

3、matplotlib 重要模块 pyplot 详解

matplotlib.pytplot包含了一系列类似于matlab的画图函数。 它的函数作用于当前图形(figure)的当前坐标系(axes)。

3.1 导入模块

import matplotlib.pyplot as plt

3.2 运用模块

导入模块后,调用相应函数,例如

plot(xdata,ydata,format)

函数参数:

例如:

import matplotlib.pyplot as plt
plt.plot([1,2],[1,2],'r--+')
plt.show()

运行结果为:

再例如一个简单的折线图如下:

import matplotlib.pyplot as plt

x = (1,3,5,9,13)

y = (2,5,9,12,28)

# 调用绘制方法
# 设置线条属性
# linewidth属性设置线条的宽度
plt.plot(x,y,linewidth = 5)

# 显示图片
plt.show()

运行结果:

除了设置这些属性以外,图形还可以设置其他属性,这些概念我们将在下一节文章中作详细的讲解。

 

总结

凡事预则立,学习任何一门知识也得从最基本开始,本章节对 matplotlib 模块做了详细的概念描述,在接下来的的章节中将结合 NumPy 模块进行实战性演练,以此对初入门的伙伴们做更好的支撑。

参考

文中示例代码:python-100-days